Bomba H

Bomba H - Ag Tutors & Música

BOMBA DE HIDROGÊNIO

Uma bomba hidrogénio (português europeu) ou hidrogênio (português brasileiro), designação mais adaptada ao seu significado bomba termonuclear, é um tipo de armamento que consegue ser até 50 vezes mais forte do que qualquer bomba nuclear de fissão.

Hans Albrecht Bethe (1906-2005) foi um dos responsáveis pelas descrição de como a fusão nuclear podia produzir a energia que faz as estrelas brilharem. Esta teoria foi publicada no seu artigo A Produção de Energia das Estrelas, publicado em 1939, e que lhe valeu o prêmio Nobel em 1967.

Hans Bethe tomou os melhores dados das reações nucleares existentes e mostrou, em detalhe, como quatro prótons poderiam ser unidos e transformados em um núcleo de hélio, libertando a energia que Eddington havia sugerido. O processo que Bethe elaborou no seu artigo, atualmente conhecido como o Ciclo do carbono, envolve uma cadeia complexa de seis reações nucleares em que átomos de carbono e nitrogênio agem como catalisadores para a fusão nuclear. Naquela época, os astrônomos calculavam que a temperatura no interior do Sol fosse de cerca de 19 milhões de Kelvin, e Bethe demonstrou que, àquela temperatura, o ciclo do carbono seria o modo dominante de produção de energia.

Na mesma época, além de Hans Bethe, o físico alemão Carl Friedrich von Weizäcker (1912-2007) e Charles Critchfield (1910-1994) identificaram várias das reações de fusão nuclear que mantêm o brilho das estrelas.

A descoberta da fissão nuclear ocorreu a 10 de dezembro de 1938 e foi descrita num artigo submetido ao Naturwissenchaften a 22 de dezembro de 1938, pelos alemães Otto Hahan (1879-1968) e Fritz Strassmann (1902-1980) e pela austríaca Lise Meitner (1878-1968).

O italiano Enrico Fermi (1901-1954) foi uma das pessoas mais importantes no desenvolvimento teórico e experimental da bomba atômica. Quando Benito Mussolini (1883-1945) aprovou o Manifesto della Razza a 14 de Julho de 1938, impondo leis racistas na Itália fascista, Enrico decidiu aceitar o emprego oferecido pela Columbia University, nos Estados Unidos. Ele e a sua família partiram de Roma para a cerimônia de entrega do Prémio Nobel a Fermi em Dezembro de 1938 e nunca retornaram à Itália. O Nobel foi-lhe dado por seu estudo sobre a radioatividade artificial, com as suas experiências de bombardeamento de urânio com neutrões, criando novos elementos mais pesados, e o seu aumento pela redução da velocidade dos neutrões. Fermi havia descoberto que quando ele colocava uma placa de parafina entre a fonte de neutrões e o urânio, aumentava a radioactividade, pois aumentava a chance do neutrão ser absorvido pelo núcleo de urânio.

Em 1934, o húngaro Leo Szilard (1898-1964) já havia patenteado a ideia da reação em cadeia e, a 2 de dezembro de 1942, Fermi conseguiu construir uma massa crítica de U235/U238 não separados (na natureza somente 0,7% são do U235 que é ativo), usando grafite para reduzir a velocidade dos neutrões e acelerar a produção de neutrões secundários. Na experiência, ele utilizou barras de cádmio como absorventes de neutrões para regular a experiência e produziu um crescimento exponencial do número de neutrões, isto é, uma reação em cadeia.

Em 1939, os físicos já sabiam que água pesada agia como um moderador, isto é, redutor de velocidade dos neutrões, como a parafina. A água normal (leve) consiste de dois átomos de hidrogênio (H) e um átomo de oxigênio (O). Na água pesada, dois isótopos de hidrogênio, deutério, unem-se com o oxigênio. Água pesada é ainda hoje utilizada como moderador em reatores nucleares de urânio natural.

Em 1939, Szilard convenceu Albert Einstein (1879-1955), um importante físico, com quem ele tinha trabalhado em 1919 em Berlim, a mandar uma carta para o presidente americano Franklin Delano Roosevelt (1933-1945) sobre o desenvolvimento pelos alemães de armas atômicas e pedindo ao presidente que iniciasse um programa americano, que mais tarde se chamaria Projecto Manhattan, chefiado pelo americano Julius Robert Oppenheimer (1904-1967), e levaria ao desenvolvimento do Los Alamos National Laboratory, ao teste Trinity, a 16 de Julho de 1945, com a explosão da primeira bomba atômica em Alamogordo, no Novo México, e à construção das bombas Little Boy (de 20 mil toneladas de T.N.T - 20 KiloTons) e Fat Man, que seriam utilizadas em Hiroshima e Nagasaki em 6 e 9 de Agosto de 1945.

O húngaro Edward Teller (1908-2003), sob protestos de Fermi e Szilard, chefiou o desenvolvimento da bomba de fusão de hidrogênio, que utiliza uma bomba de fissão como gatilho para iniciar a colisão do deutério com o trítio. A bomba de hidrogênio, Ivy Mike (com intensidade equivalente à detonação de 10,4 megatoneladas de T.N.T.) foi testada a 31 de Outubro de 1952, em Eniwetok.

A primeira bomba de hidrogênio explodiu durante uma experiência feita pelos Estados Unidos em 1952. Detonou com uma força de dez megatons, igual à explosão de dez milhões de toneladas de TNT, um forte explosivo convencional. A potência desta terrível arma mostrou ser 750 vezes superior à das primeiras bombas atômicas e suficiente para arrasar qualquer grande cidade.

Em 1961, a Rússia experimentou a bomba mais poderosa até então concebida (apelidada de Tsar Bomba), à qual foi atribuída uma força de 57 megatons. Inicialmente, a Tsar era uma bomba de 100 megatons. Porém, temendo que a explosão resultasse em uma tempestade radioativa que atingiria a Europa ou o próprio território russo, sua potência foi reduzida pela metade.[1]

Já o teste nuclear mais potente realizado pelos Estados Unidos foi o Castle Bravo, realizado no dia 1 de março de 1954. O projeto da bomba previa um rendimento de 6 Megatons, mas devido a um erro de cálculo, explodiu com uma força de 15 MT.

Até os dias de hoje, início do século XXI, ainda não é possível controlar a reação de fusão nuclear para aplicações pacíficas, como já é realizado como a fissão nuclear. Um dos fatores que pesam contra o seu uso é a falta de uma maneira para se controlar temperaturas altíssimas (cerca de 100 milhões de graus Celsius).

A fusão nuclear também ocorre no Sol, e na maioria das estrelas, onde são encontradas temperaturas de um milhão a dez milhões de graus Celsius. Como o Sol tem 4,5 bilhões de anos, ele não nasceu do material primordial (hidrogênio e hélio) que preenchia o Universo cerca de 500 000 anos após o Big Bang, mas sim de material já reciclado. Este material passou alguns milhares de milhões de anos numa estrela que se tornou uma supergigante e explodiu como supernova, ejetando hidrogênio e hélio no espaço, juntamente com cerca de 3% de elementos mais pesados, como carbono, oxigênio, enxofre, cloro e ferro que tinham sido sintetizados no núcleo da supergigante, antes desta tornar-se uma supernova. O material ejetado começou a concentrar-se por algum evento externo, como a explosão de outra supernova ou a passagem de uma onda de densidade, e, com o aumento de sua densidade, as excitações por colisões atômicas e moleculares provocaram a emissão de radiação. Esta perda de energia por radiação torna a contração irreversível, forçando o colapso gravitacional. A segunda lei da termodinâmica nos ensina que um processo que envolve um fluxo líquido de radiação é irreversível, já que há aumento da entropia, representada pela perda da radiação.

HIROSHIMA APÓS A BOMBA DE FISSÃO NUCLEAR

A explosão de uma bomba atômicaconsegue facilmente arrasar uma grande cidade. Na imagem, a cidade de Hiroshima (Japão) após a explosão da primeira bomba atômica usada contra civis em finais da Segunda Guerra Mundial. Entretanto, a força da bomba jogada sobre Hiroshima, baseada em fissão nuclear, é muitas vezes menor que a de uma bomba de hidrogênio (nunca utilizada em guerra), sendo que a maior bomba de hidrogênio detonada pelo homem teve um poder de destruição 4000 vezes superior ao da bomba de Hiroshima.

TSAR BOMB,O MAIOR TESTE DE BOMBA NUCLEAR.

Free Web Hosting